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ABSTRACT: Understanding the structure—activity relationship
(SAR) of antibiotic scaffolds is crucial for the development of
antibiotics to counter the growing crisis of antimicrobial resistant
bacteria. However, an overwhelming space of structural features
impairs a comprehensive understanding of the mechanism of
action for potential antibiotic candidates. In this study, antibacterial
data of a set of newly synthesized cyanine molecules are analyzed
with both traditional machine learning (ML) and commercially
available large language models (LLMs) to elucidate the SAR.
Some LLMs, particularly Grok-3 Think and ChatGPT ol,
outperform the traditional ML classifiers, and both approaches
highlight positive charges and lipophilicity as key properties for

effective cyanine antibiotics.

B INTRODUCTION

Since their discovery in the early 20th century, antibiotics have
transformed modern medicine and saved countless lives, yet
this achievement is increasingly threatened by the global rise of
antimicrobial resistance (AMR). Today, AMR represents one
of the most urgent global health crises, with drug-resistant
bacterial infections causing over 1 million deaths annually."
Without effective interventions, this burden is projected to
reach between 2 and 10 million deaths per year by 2050,"
with 39 million cumulative deaths directly attributable to AMR
between 2025 and 2030. The economic impact is equally
devastating, with AMR-related healthcare costs exceeding $55
billion annually in the United States alone.” Despite this
pressing need, antibiotic development remains prohibitively
resource-intensive, typically requiring 10—15 years and over $1
billion per approved compound, with success rates below 1%
compared to 10—15% in other therapeutic areas.”

The discovery of new structural classes of antibiotics is
particularly challenging, as evidenced by the 38 year gap
between the introduction of fluoroquinolones in 1962 and
oxazolidinones in 2000." One strategy to accelerate antibiotic
discovery is to revisit historically overlooked molecular
scaffolds using modern computational tools. Cyanine dyes
represent a compelling example of these overlooked scaffolds.
Known primarily for their optical properties and applications in
near-infrared biomedical imaging, exemplified by the Food and
Drug Administration-approved dye Indocyanine Green
(ICG),” cyanines were first studied for antimicrobial activity
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in the 1920s but were largely abandoned as therapeutic
candidates due to nonspecific mechanisms and limited
understanding of the structure—activity relationship.™®

By leveraging machine learning (ML) and artificial
intelligence (AI), researchers can now explore these over-
looked scaffolds with high efficiency. Al approaches have
demonstrated remarkable success in drug discovery, with Al-
discovered molecules showing 80—90% success rates in Phase I
clinical trials—substantially higher than historical industry
averages.”'” These technologies enable rapid virtual screening
of millions of compounds, dramatically reducing time and
resources compared to traditional experimental methods. Al
has transformed drug discovery across therapeutic areas,
including cancer (optimizing kinase inhibitors with specific
selectivity profiles),'’ neurodegenerative diseases (identifying
compounds that cross the blood—brain barrier),'* and antiviral
development (designing molecules targeting viral proteases)."
In the antibiotics discovery field, deep learning models have
identified new structures such as halicin by screening over 107
million molecules.'* While deep learning approaches have
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Figure 1. Overview of the study workflow and data set characterization. (A) Schematic overview of the project pipeline, including synthesis of
cyanine-derived molecules, minimum inhibitory concentration (MIC) testing, ML and LLM-based prediction of activity, suggestion of new
candidate molecules, and iterative refinement for future experimental validation. (B) Illustration of the major components of an example cyanine
molecule: two heterocycles, a polymethine bridge, and the functionalized carbon chain (arm) extending from the nitrogen atom or ion. (C)
Histogram of all MIC values observed across the data set, disaggregated by the methicillin resistance status of the S. aureus strains (resistant versus
susceptible). (D) Scatterplot comparing the median MIC of each molecule against methicillin-resistant versus methicillin-susceptible Staphylococcus
aureus strains. (E) Distribution of Pearson correlation coefficients between each of the 1133 Mordred descriptors and median MIC. (F)
Distribution of Pearson correlation coefficients between each one-hot encoded structural subfeature and median MIC. (G) Histogram of activity
percentage for all molecules, based on the binary classification threshold of MIC <80 uM.

enabled the identification of possible therapeutic candidates,
these methods typically require specialized expertise in
computational chemistry and complex feature engineering,
limiting their accessibility to many research groups.

In this study, we developed an understandable, accessible
approach for screening and optimizing cyanine-based anti-
microbials against Staphylococcus aureus, a pathogen respon-
sible for approximately 119,000 bloodstream infections and
20,000 deaths annually in the United States.'” Methicillin-
resistant S. aureus (MRSA) is particularly concerning, with
resistance rates exceeding 50% in many regions.1

We investigated whether commercially available large
language model (LLM)-based Al systems can predict the

antibacterial activity of cyanine derivatives without requiring
specialized computational infrastructure or expertise. We
compared the performance of ChatGPT ol, 03 mini, 03
mini high; Claude 3.0 Opus, 3.5, Sonnet; Grok-2, Grok-3,
Grok-3 Think; Google Gemini 2.0 Flash Thinking (FT); and
Deepseek R1, each prompted using only the simplified
molecular-input line-entry system (SMILES) notation,"”
against a gradient boosting classifier trained on 24 simple
one-hot (a method of representing categorical data as
numerical values, suitable for use in ML models) encoded
features. For our analysis, we used a data set of 143 newly
synthesized cyanine derivatives, each comprehensively tested
against a panel of 163 S. aureus clinical isolates, including 110
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methicillin-resistant strains, representing one of the most
extensive structure—activity relationship (SAR) studies of this
antimicrobial scaffold to date.

Using a traditional ML framework, we identified key SARs
associated with antimicrobial activity. These included the
presence of dimethylamine moieties on flexible linkers,
extended polymethine bridges, and the absence of bulky
substituents, which were found to diminish the activity. A
gradient-boosted tree classifier trained on these features
demonstrated robust predictive performance (F; ~ 0.8 across
1000 bootstrap iterations), underscoring the capacity of
relatively simple molecular descriptors to capture the nuanced
SAR within this compound class.

Furthermore, LLM-based systems Grok-3 Think and
ChatGPT ol achieved F, scores above 0.8 when classifying
compounds as active or inactive, exceeding the F, score of the
gradient-boosted classifier. Notably, the LLMs identified the
same key SAR found by the ML framework including amines,
aromatic heterocycles, and unmodified conjugated polyme-
thine chains. The LLMs provided natural language explan-
ations of the SAR that were consistent with the experimental
validation. Importantly, several of the identified cyanine
derivatives demonstrated broad-spectrum activity against not
only S. aureus but also other clinically important Gram-positive
pathogens, including multiple Streptococcus species.

This work demonstrates that LLMs can efficiently guide the
exploration of chemical spaces and accelerate the discovery of
antimicrobial compounds without requiring specialized
computational expertise. The approach enables rapid iteration
between virtual screening and experimental validation (Figure
1A), reducing the time and resources required for early-stage
drug discovery. Beyond antimicrobials, this methodology may
be applicable to a wide range of therapeutic areas where SARs
are complex, and traditional computational approaches remain
inaccessible to many researchers.

B RESULTS AND DISCUSSION

Data Set Generation and Feature Representation. To
evaluate the ability of traditional ML and LLM-based Al
chatbots to predict antibiotic activity, we constructed a data set
of 143 cyanine-derived molecules synthesized in our
laboratory. These cyanine molecules share key structural
motifs (Figure 1B): all have an extended polymethine bridge
capped by a nitrogen (one neutral and one ionic). Each
nitrogen is contained in a heterocyclic group, and a
functionalized carbon chain extends from each nitrogen as
well. This carbon chain, or “arm,” can take various forms, from
a methyl group to a 13-atom chain functionalized by tert-butyl
carbamate. The symmetry of the cyanines varies dramatically,
with some being completely symmetric except for the cationic
nitrogen and others having entirely different heterocyclic
groups.

Each molecule was tested against a panel of over 160 S.
aureus strains including both methicillin-susceptible and
methicillin-resistant clinical isolates. Antibacterial activity was
assessed using a standard broth microdilution assay to
determine the MIC, defined as the lowest concentration of a
compound that inhibited bacterial growth after 18—24 h of
incubation. Because the assay employs a 2-fold serial dilution
series, the MIC values are inherently discrete, typically falling
within a fixed set of concentrations, in this case: 0.625, 1.25,
2.5, 5, 10, 20, 40, and 80+ M, denoting that the MIC is higher
than the highest compound concentration tested of 80 uM.

To evaluate whether the methicillin resistance status of S.
aureus strains influenced the activity of the tested compounds,
we compared MIC distributions for each molecule across
methicillin-susceptible and methicillin-resistant strains (Figure
1C). The Wilcoxon signed-rank test,'® which is more
appropriate than Student’s ¢ test for non-normal distributions,
yielded a value of 157.0 (p = 0.44), indicating no statistically
significant difference between susceptible and resistant MIC
distributions. Figure 1D displays the median MIC values for
each compound in both strain categories with a 5% jitter
applied to improve visualization. The Pearson correlation
coefficient for a compound’s median MIC against susceptible
versus resistant strains was 0.958 (p = 1.3 X 107%).

Both statistical tests suggest that methicillin resistance has a
minimal influence on the efficacy of the tested compounds,
supporting the hypothesis that their mechanism of action
differs from that of f-lactam antibiotics such as methicillin.

We then explored three complementary strategies for
molecular feature representation: RDKit-based substructure
fingerprints, Mordred physicochemical descriptors, and a
manually curated one-hot encoding of key substructures.
These representations reflect a range of chemical abstraction
levels, from molecular fragments to computed chemical
properties.

RDKit substructure fingerprints consist of 2048 bit binary
vectors capturing the presence or absence of common
molecular fragments. Mordred descriptors, in contrast, provide
1613 real-valued physicochemical and topological features
derived from SMILES strings. After filtering out non-numeric
and missing values, 1133 Mordred features were retained for
analysis.

Next, we evaluated the extent to which individual Mordred
descriptors correlate with the antimicrobial activity. Figure 1E
shows the distribution of Pearson’s correlation coefhicients
between each of the 1133 descriptors and MIC values. None
exceeded an absolute correlation of 0.5, indicating that no
single physicochemical property accounted for the antibacterial
potency across this chemical class.

To test a more interpretable and lower-dimensional feature
space, we manually selected 24 substructures based on
relevance to the cyanine scaffold and encoded them as binary
features (present = 1, absent = 0). These substructures (shown
in Figure S1) were variants of the key functional groups that
comprise a cyanine: six possible polymethine bridges, four
possible heterocyclic groups on each end (one ionic and one
neutral), and the ten most common alkyl “arms” that could be
attached to the nitrogen on either end of the bridge. This
simplified one-hot encoding offers a balance of interpretability
and dimensionality control, especially valuable for small data
sets. Pearson’s correlation analysis again revealed that none of
these binary features strongly correlated with MIC either
(Figure 1F), suggesting that activity is not attributable to
individual features but likely depends on nonlinear and
combinatorial relationships of different molecular features.

Activity labels were assigned based on the median MIC
across all tested strains: molecules with a median MIC below
80 uM were labeled “active,” while those at or above this
threshold were considered “inactive.” This binarization yielded
a roughly balanced data set of 60% active and 40% inactive
compounds (Figure 1G).

To assess the diversity of the chemical space captured by the
library, we calculated the pairwise Tanimoto similarity using
the RDKit Tanimoto similarity function,"® where each
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Figure 2. Performance metrics for traditional ML classifiers and feature importance analysis. (A) Distribution of F, scores across 1000 independent
train/test splits for four classifiers: Gradient Boosted Trees, Gaussian Naive Bayes, Logistic Regression, and Extra Trees. Each model was trained on
90% of the data set and evaluated on a held-out set of 14 molecules (10%). (B) Distribution of the area under the receiver operating characteristic
(ROC) curve (ROC AUC) for each classifier across the same iterations, capturing the balance between true-positive and false-positive rates. (C)
Top 20 one-hot encoded molecular substructures ranked by their importance in the Gradient Boosted Tree classifier, as measured by normalized
mean decrease impurity (MDI), reflecting the reduction in class impurity at decision tree nodes. (D) Chemical structures of the nine most
influential substructures shown in panel (C), illustrating the key functional motifs associated with antibacterial activity.

structure was converted to a 2048 bit Morgan fingerprint
vector with radius 2. The distribution of pairwise Tanimoto
similarities is shown in Figure S2; the mean similarity was
0.389, and the standard deviation was 0.158. These Tanimoto
similarity values are comparable to those reported for broad
screening collections (0.27—0.57),”° demonstrating that our
data set is structurally diverse and suitable for evaluating model
generalization.

Figure S3 shows the two-component principal component
analysis (PCA) plot of the cyanine structures colored by the
activity label according to the two feature sets: Mordred
descriptors and one-hot encoding. While no strict clustering
was observed, both PCA plots show enough concentration of
active structures in one part of the space to suggest the
importance of structure on activity. As with Figure 1E,F, the
distribution of structures in the PCA space indicates a complex
SAR that ML may elucidate.

ML Binary Classification. Given the weak individual
correlations between single features and MIC values (Figure
1E,;F), we hypothesized that antimicrobial activity might
instead emerge from nonlinear or combinatorial interactions
among features. To capture these more complex relationships,
we framed the task as a binary classification problem:
predicting whether a given molecule is “active” (median
MIC < 80 M) or “inactive” (median MIC > 80 uM). The
distribution of MICs across the data set is bimodal (Figure
1C), and most molecules were either consistently active or

inactive across the strain panel (Figure 1G). As such, these
observations justify a binary labeling approach and support the
use of supervised classification techniques.

We trained and evaluated four widely used binary classifiers
on the data set: Logistic Regression, Gradient Boosted Trees,
Extra Trees, and Gaussian Naive Bayes. A detailed explanation
of these classifiers is included in the Methods section, and the
default hyperparameters were used for each (see Supporting
Information, “Machine Learning Classifier Hyperparameters
and Tuning Ranges”).

Each classifier was evaluated using repeated train/test
splitting: 90% (129) of the molecules were used for training
and 10% (14 molecules) were held out for testing. This
process was repeated 1000 times to estimate variability. The
numbers of true positives (truly active molecules labeled
“active”), false positives (truly inactive molecules labeled
“active”), true negatives (truly inactive molecules labeled
“inactive”), and false negatives (truly inactive molecules labeled
“active”) were recorded. These numbers were then used to
calculate three key metrics: precision, recall, and F; score.”**

Precision is defined as

TP

p=TP+FP (1)

where TP is the number of true positives, and FP is the
number of false positives. Recall is defined as
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TP
r= -
TP + FEN )

where FN is the number of false negatives. Then, the F, score
is defined as the harmonic mean of the precision and recall

Fo 2P _ 2TP?
" (r+p) 2TP+FP+EN (3)

Because the F score is the harmonic mean of both precision
and recall, only a model that can correctly label as many active
molecules as possible while simultaneously rejecting inactive
molecules will have a high F, score. This makes the metric
robust against imbalanced data sets and prevents trivial
classifiers (such as always labeling a molecule as “inactive”)
from scoring well, as can occur with an ordinary accuracy
score.

Figure 2A shows the distribution of F; scores for each
classifier across all iterations. Among the models tested, the
Gradient Boosted Tree and Gaussian Naive Bayes classifiers
exhibited the strongest performance, achieving mean F; scores
exceeding 0.8 with lower variance compared with the Logistic
Regression and Extra Trees classifiers.

The ROC is an alternative to the F; score for binary
classification that tracks how the false-positive rate and true-
positive rate relate to each other as a classifier becomes more
sensitive to true positives. The plots of the mean and standard
deviation for all 1000 ROC curves for each classifier are shown
in Figure S4, and the distribution of area under the ROC curve
is shown in Figure 2B. The Gradient Boosted Tree classifier
had the highest ROC area under the curve on average, while
the Gaussian Naive Bayes classifier had the lowest. These
results suggest that the Gradient Boosted Tree offers the most
reliable predictive performance across classification metrics.

The relatively small size of the data set (143 molecules)
likely contributed to model performance variability, since the
presence or absence of key molecular motifs in the training
data set could greatly affect the classifier’s ability to generalize.
Nevertheless, the Gradient Boosted Tree model demonstrated
robust performance, even when some critical molecules were
missing from the training data.

The Matthews correlation coefficient (MCC) can be used as
an additional scoring metric for binary classification which is
robust under mild class imbalance,**** as in the case of the
40—60% split in this data set. Figure S5 shows the distribution
of MCC for the same four classifiers shown in Figure 2A,B.
While the MCC is generally lower for all classifiers than the F;
score, the relative MCC of the classifiers is similar to the
relative F; score. Despite the class imbalance, the Gradient
Boosted Tree classifier remains the best overall classifier using
all three performance metrics.

Hyperparameter tuning was attempted for all four classifiers
using the BayesSearchCV function in scikit-optimize, but it did
not improve the performance and was therefore not pursued
further. The failure of hyperparameter tuning across different
models is explained by the size of the data set. Bayesian
optimization methods such as BayesSearchCV rely on iterative
sampling of the hyperparameter space, constructing a
probabilistic surrogate model (typically a Gaussian process)
to estimate the performance landscape and balance exploration
versus exploitation.”>*® This optimization algorithm generally
requires numerous evaluations to model the response surface
accurately. With limited or noisy data, the surrogate model
may fail to converge toward an optimum.””** In small data

sets, cross-validation introduces high variance in performance
estimates, which introduces the kind of noise that interferes
with the surrogate model’s convergence.zg’30 Given our modest
data set (n = 143 molecules) and a 90/10 train/test split, each
cross-validation fold contained very few samples (out of the
129 training-set molecules used for hyperparameter optimiza-
tion, ~14 molecules in the test set using 10-fold), leading to
high variance and poor convergence of the surrogate model.

Because of the superior classification performance of the
Gradient Boosted Tree, we investigated which features
contributed most to its decision-making. Feature importance
was measured using MDI, a built-in metric for tree-based
models that quantifies how often and effectively each feature
splits the data. The MDI is the average decrease in Gini
impurity (G) when a given feature is used to bifurcate the data
set. The Gini impurity®" is defined as

G =D, p()(1 - p()

i=1 (4)

where C is the total number of classes, and p(i) is the
probability of selecting a point from the data set with class i.
Figure 2C shows the top 20 features ranked by importance,
assessed as the MDI, in the Gradient Boosted Tree classifier.
The structures of the top nine features and their corresponding
importance are shown in Figure 2D.

A high MDI score indicates that a feature plays an important
role in classification but does not reveal whether the feature is
associated with increased or decreased activity. In other words,
a feature may contribute positively or negatively to activity,
depending on its structural context. To clarify this direction-
ality, we calculated the Pearson correlation between each
important feature and MIC (Figure 1E). The top-ranked
features and their correlations with the MIC are shown in
Figure S6.

The most important features included a dimethylamine
group attached to an unmodified, long alkyl chain (Feature
20), a five-carbon polymethine bridge (Feature 1), and an
indole heterocycle. Several other top-ranking features
represented charged substituents located at the termini of
long side arms (e.g, Features 8, 22, and 19). These were
typically associated with lower MIC values, suggesting that
extended conjugation and localized positive charge are critical
for the activity. In contrast, sterically bulky groups, particularly
a large, branched arm (Feature 18), were strongly associated
with inactivity. Some features, such as a benzoindole ring
(Feature 11), had a more ambiguous relationship with activity,
possibly due to context-dependent effects on the molecular
scaffold. These findings support a rational design framework
for future compound optimization: molecules should preserve
charge (e.g. through cationic dimethylamine groups), maintain
polymethine bridge length to maximize cation delocalization,
and avoid sterically hindered substituents that can interfere
with the cell target interaction or binding.

The key structural features identified by our Gradient
Boosted Tree model, notably the importance of localized
positive charge, extended conjugation of the cationic methine
bridge, and conformational flexibility, strongly suggest a
membrane-targeting mechanism of action. Cationic amphi-
philic compounds, such as the active cyanine derivatives used
in this study, typically interact electrostatically with the
negatively charged phospholipid bilayer of Gram-positive
bacteria such as S. aureus. The presence of dimethylamine
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Table 1. Overview of the 14 Commercial LLMs Evaluated for Molecular Classification in This Study”

service model company access date used success?
ChatGPT 40 OpenAl free” 2025/02/05 no
ChatGPT ol OpenAl subscription 2025/02/12 yes
ChatGPT 03 mini OpenAl subscription 2025/02/12 yes
ChatGPT 03 mini-high OpenAl subscription 2025/02/12 yes
Meta Al Meta free 2025/02/05 no
Gemini 2.0 Flash Google free 2025/02/12 no
Gemini 2.0 Flash Thinking (FT) Google free 2025/02/12 yes
Grok Grok-2 XAl deprecated 2025/02/12 yes
Grok Grok-3 xAlL free 2025/02/19 yes
Grok Grok-3 Think xAlL subscription 2025/02/19 yes
Grok Grok-3 DeepSearch XAl subscription” 2025/02/19 no
Deepseek R1 Perplexity/Deepseek subscription® 2025/02/12 yes
Claude 3.5 Sonnet Anthropic subscription” 2025/02/12 yes
Claude 3 Opus Anthropic subscription” 2025/02/12 yes

“The “success” column indicates whether the model was able to complete the activity classification task successfully using the provided molecular

input and prompt.

ile this model is available with a free account, a subscription appreciably increases the usage allowed per session. “This

model is free with some services but is only available on Perplexity with a subscription.

groups (Feature 20) and other positively charged moieties
likely facilitate initial binding to anionic lipid headgroups, while
the extended polymethine bridge (Feature 1) may enable
membrane insertion and disruption through z-stacking and
hydrophobic interactions. Conversely, bulky substituents
(Feature 18) appear detrimental to activity, potentially by
sterically hindering optimal membrane association.

This proposed mechanism is consistent with previous
studies describing the behavior of cyanine dyes in biological
membranes. It is known that, in eukaryotes, cationic cyanines,
such as Cy3 and CyS derivatives, accumulate in mitochondria
due to their positive charge and lipophilic nature, which
enables electrostatic and hydrophobic interactions with the
negatively charged mitochondrial membrane surface.”>* The
mitochondrial membranes share several biophysical properties
with bacterial membranes, including overall anionic lipid
composition, which explains the analogous behavior of these
dyes in bacterial systems. Structural modifications to cyanines
that increase the cationic character, such as the incorporation
of 1,4-diazabicyclo[2.2.2]octane (DABCO) moieties™ or the
introduction of lipophilic side chains (e.g, alkyl groups),*
have been shown to increase membrane affinity and enhance
cell penetration, while excessive steric bulk, such as fert-butyl
substituents or double-conjugated fluorophores, has been
associated with decreased cell uptake and targeting efficiency.’”
The presence of cationic moieties (e.g, arginine and lysine) is
critical for initial electrostatic interactions of antimicrobial
peptides with negatively charged bacterial membranes.*® In the
case of quaternary ammonijum compounds such as benzalko-
nium chloride, the balance between hydrophobic alkyl chains
and cationic headgroups is critical for membrane insertion.’”
In contrast, cyanines with reduced steric bulk exhibit greater
flexibility, enabling deeper insertion into lipid bilayers.*” These
observations are consistent with the structural features that we
identified in our model, reinforcing the hypothesis that
cyanine-derived antibiotics likely exert their effects by
association with and disruption of the cell membrane.

Our results extend and deepen the previous analysis of the
SAR of cyanine-based antimicrobials. While cyanine dyes have
been extensively characterized in terms of their photophysical
properties and imaging, their antimicrobial potential, partic-
ularly beyond their use as photosensitizers, remains poorly

understood. Mohamed and AbuEl-Hamd (2016) investigated a
small number of bis-coumarin cyanine dyes and tested them
for their antimicrobial activity against a limited number of
organisms.”' They focused primarily on the influence of
specific metal coordination complexes and chromophore
variants rather than on a systematic SAR approach. Similarly,
Prakash et al. (2023) synthesized cyclohexene-based heptame-
thine—cyanine dyes containing sulfur and selenium atoms and
evaluated their antimicrobial photodynamic therapy (APDT)
mainly against S. aureus and Escherichia coli.*> Although the
authors investigated modifications at the heterocyclic ends,
their SAR conclusions were limited to a few variants and
largely focused on their performance as near-IR light-activated
photosensitizers. Here, we comprehensively analyze 143
structurally diverse cyanine derivatives by quantifying the
contributions of terminal dimethylamine groups, revealing the
negative influence of steric bulk and defining the optimal
charge distribution across the cyanine scaffold. Moreover, our
computational approach enables the SAR investigation on
cyanines at a larger scale compared to previous studies, which
were typically limited to a few analogs, and provides clearer
molecular design principles for scaffold optimization.

Binary Classification by Commercial LLMs. Given the
good performance of traditional ML models and their ability to
identify key structural motifs relevant to antibacterial activity,
we sought to explore whether general-purpose LLMs could
replicate or even exceed these capabilities. LLMs are
increasingly used in scientific applications because of their
ability to interpret diverse inputs, including text, code, and
formatted strings such as the SMILES, and to compute upon
them using data gained from pretraining using massive
collections of written text. The process of training LLMs to
conduct binary classification in this way is known as “in-
context learning” (ICL)*™* and has been demonstrated in a
variety of fields including drug toxicity prediction*® and tumor
detection in medical imaging."” The accessibility, flexibility,
and speed of LLMs make ICL an attractive tool for early-stage
drug discovery, particularly for hypothesis generation and low-
barrier molecule screening. In this study, we evaluated whether
LLMs could (1) predict the antibacterial activity of different
cyanines, (2) propose new candidate molecules, and (3)
identify structural features that are important for antibiotic
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Figure 3. Evaluation of the commercial LLM performance in molecular classification and compound generation. (A) F; scores for all LLMs
compared with the traditional Gradient Boosted Tree classifier on the task of predicting binary antibiotic activity labels (“active”/“inactive”) for 14
unseen test compounds. (B) Precision versus recall for each model. Color and shape indicate model source or architecture (e.g,, brand or
framework). The scikit-learn Gradient Boosted Tree model serves as a traditional ML baseline. (C) Assessment of the chemical feasibility of LLM-
generated molecules. Suggested SMILES were categorized as “feasible” (synthetically plausible), “infeasible” (implausible or chemically invalid), or
“illegible” (unparseable due to incorrect formatting). (D) Chemical structures of the nine feasible molecules proposed by Grok-3 Think, the top-

performing LLM.

activity. We also compare the prediction accuracy of these
LLMs to the traditional Gradient Boosted Tree classifier,
which requires far more training to implement and is therefore
less accessible to nonexperts in the ML field.

To this end, we tested 14 distinct models from six Al
companies during a two-week period in February 202S. These
services undergo near-constant updates and expansions,
meaning that the results and functionality of these models
could change drastically over time.

All models received identical prompts according to a simple
workflow illustrated in Figure S7. Each LLM was first
presented with a training data set of SMILES-formatted
molecular structures and the corresponding binary activity
labels (i.e., “active” and “inactive”). The models were then
asked to examine these training data and identify molecular
features associated with activity. Next, they were given 14
previously unseen test molecules and asked to predict their
activity classification (Figure S8). Finally, each model was
prompted to design ten new molecules likely to be active based
on insights gained from the previous analysis. The exact
wording of the identical prompts given to each LLM is
included in the Supporting Information, “LLM Binary
Classification Scripts.”

Table 1 shows the models with which binary classification
was attempted. The table includes the name of the service, the
specific model used, the company responsible for designing the
model, the state of access for the model as of publication, the
date the model was accessed, and whether the model could
successfully complete the binary classification task.

Not all models were capable of the three tasks presented
(predict, propose, and identify), even if the models were from
the same service and company. This is likely because various
services now have different specializations. Most LLM services
have a generic conversational chatbot that is meant to
synthesize responses to most questions using input data and
Internet access. Some companies, however, have expanded
their services to include “thinking” models that specialize in
computation, coding, and logic (e.g., Grok-3 Think, Gemini
FT, ChatGPT o1, 03 mini, and 03 mini-high). Other services
specialize in deep research, focusing on finding answers to
questions online and providing abundant sources (e.g.,, Grok-3
DeepSearch).

Ten of the 14 LLMs successfully completed the binary
classification task. Figure 3A compares the F; scores of these
LLMs to those of the traditional Gradient Boosted Tree
classifier. The precision and recall for each model are shown in
Figure 3B. Most models underperformed relative to the
Gradient Boosted Tree (F,; score of ~0.8), and only three
LLMs exceeded an F, score of 0.7: Grok-3, ChatGPT ol, and
Grok-3 Think. Of these, two LLMs, ChatGPT ol and Grok-3
Think, exceeded the F, score of the Gradient Boosted Tree
classifier. Grok-3 Think achieved the highest performance
overall, with a recall of 1.0 and a precision of 0.9, while
ChatGPT ol achieved ~0.85 in both precision and recall.
These metrics show that Grok-3 Think correctly labeled all
active molecules in the test set, with ChatGPT ol labeling one
false negative. Both Grok-3 Think and ChatGPT ol screened
out all but one false positive.
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Table 2. Structural Feature Attributions Reported by LLMs That Were Able to Complete the Binary Classification Task”

o3 03 Gem-ini

feature ol mini mini-high FT
extended bridge good good good good
positive charge good good good
arms (in general) good
bulky groups bad bad bad
polarity/negative charge  bad bad bad bad
benzo-indoles good
arms with amines good good good good
groups on bridge bad bad
modified rings bad bad bad

neutral amides

symmetry

Grok
-2
good
good
good
bad
bad

good

Grok Grok-3 Perplexity Claude 3.5 Claude 3
-3 Think R1 Sonnet Opus
good good good good good
good good good
bad bad bad
bad bad good bad
good good
good good good
bad bad bad
bad bad bad bad
bad
good

“For each feature, a “good” label indicates that the model associated the feature with increased antibiotic activity, while “bad” indicates a negative

association. Blank cells reflect features not mentioned by a specific model.

Because the test set of molecules in Figure S8 contained 6
inactive molecules and 8 active molecules, there was a slight
class imbalance. The MCC was again calculated for the
predictions of all LLM models and compared with the
Gradient Boosted Tree classifier (Figure S9). The top-
performing LLMs ranked the same under MCC as under F,
score, but a few notable differences arise. Grok-3 had a slightly
higher MCC than the Gradient Boosted Tree, and many of the
lower-ranking models switched places in the MCC ranking.
The Deepseek R1 model accessed through Perplexity was the
eighth best by F, score (better than the three models) but
worst under MCC.

All ten LLMs were also asked to generate ten new molecules
that were likely to be active. The format of the suggestions
provided by LLMs was always SMILES, although that was not
explicitly requested in the prompt (see Supporting Informa-
tion, “LLM Binary Classification Scripts”). This generative task
required a form of creative synthesis and pattern abstraction
that lies outside the capabilities of conventional ML models.

Each suggestion was categorized into one of three classes:
(1) “feasible”, denoting valid, synthetically plausible SMILES
strings; (2) “infeasible”, corresponding to syntactically valid
SMILES that encoded molecules with unrealistic or chemically
implausible features; and (3) “illegible”, those with SMILES
strings that were invalid or could not be interpreted using
cheminformatics libraries such as RDKit. Figure 3C summa-
rizes the performance of each model according to this
classification scheme.

The quality of the suggested structures varied widely. The
most successful generators were Grok-3 Think (9 feasible, 1
illegible), Gemini 2.0 FT (9 feasible, 1 infeasible), and Grok-3
(10 feasible). In contrast, ChatGPT ol returned mostly
infeasible structures. All LLM suggestions except those from
Grok-3 Think are shown in Figures S10 and S11.

Grok-3 Think was not only the sole model to surpass the
performance of the Gradient Boosted Tree under training/test
validation but also the one most successful at suggesting
feasible molecules for synthesis and testing. Figure 3D displays
the nine valid molecules proposed by Grok-3 Think. These
structures consistently featured a dimethylamine arm, a
positively charged substructure also highlighted as important
by both traditional ML models and other LLMs. Most of them
adhered to cyanine or hemicyanine scaffolds, preserving the
core design principles observed in the training data.

Each LLM was also asked to identify structural features that
were beneficial or detrimental to antibacterial activity. Table 2
compiles the qualitative feature attributions across models.
Each row in the table represents a feature mentioned by at
least one model, with each column in that row labeled “good”
if the corresponding model associated that feature with high
antibacterial activity or “bad” if the model associated that
feature with antibacterial inactivity.

Although the different LLMs varied in their predictive
accuracy, several consistent SARs emerged among those that
successfully completed the classification task (Table 2). All ten
successful LLMs emphasized the importance of an extended
conjugated polymethine bridge, with modifications to the
bridge frequently associated with reduced activity. Seven
models linked a high density of localized positive charge, often
through terminal amines or dimethylamine arms, with
increased antibacterial activity, while eight models noted that
negatively charged substituents were detrimental. Dimethyl-
amine groups were cited as beneficial by eight models. Steric
bulk was also flagged as unfavorable: eight models identified
long or bulky side arms as detrimental, and seven advised
against additional substituents on the heterocyclic ring system,
particularly halogens, such as chlorine or bromine. These
qualitative attributions are remarkably consistent with the
features identified by the Gradient Boosted Tree model
(Figure 2D), strengthening confidence in the biological
relevance of these design rules.

The consistency between feature attributions derived from
LLMs and traditional ML models strengthens our under-
standing of the structural elements that contribute to the
antimicrobial activity. Both approaches identified the same key
structural determinants: positively charged groups (particularly
dimethylamine groups), extended conjugation through the
polymethine bridge, and the negative impact of bulky
substituents. This agreement across different computational
methods increases confidence in these SARs.

This convergence is notable because LLMs and traditional
ML models, such as Gradient Boosted Trees, analyze
molecular information differently: LLMs process patterns
learned from text-based training data, while the Gradient
Boosted Tree classifier operates purely on the basis of
statistical relationships between molecular features and
experimental data. The fact that both approaches reach similar
conclusions might suggest that these structural patterns have
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Figure 4. Identification of key properties and cyanine-derived antibiotic candidates using LLM- and ML-guided design. (A) PCA plot of the
cyanine structures in the data set according to charge and polarity descriptors (see Figure S11), with the descriptors reduced to two components.
(B) Violin plot of MCC for binary classification over 1000 repeated bootstrap samples for four classifiers. The top distribution shows the MCC
under the original substructure encoding features, while the bottom distribution shows the MCC under the new LLM-guided charge and polarity
descriptors. (C) Schematic illustrating the combinatorial assembly of new candidate molecules from five modular substructure classes: ionic
heterocycles, neutral heterocycles, polymethine bridges, and two side arms (Arm A and Arm B). This framework enabled systematic enumeration of
>13,000 theoretically possible molecules. (D) Top 10 candidate molecules selected by Grok-3 Think, the best-performing LLM, based on structural
evaluation and predicted activity. These structures reflect design principles favored by the model, including extended conjugation and positively
charged substituents. (E) Top 10 candidates ranked by the Gradient Boosted Tree classifier using a custom “interest score” that integrates model-
predicted activity and structural similarity to the most active compounds in the data set. These Gradient Boosted Tree-prioritized candidates
emphasize compact structures with indole cores and minimal steric bulk.

PCA on molecular descriptors associated with membrane
interaction.

For all cyanine derivatives in our data set, we computed two
classes of molecular features: (1) lipophilicity and perme-
ability-related descriptors, including molecular weight, octa-

robust biological relevance rather than being artifacts of a
particular modeling approach.

The convergence of findings from both traditional ML
models and LLMs consistently highlighted cationic character,

extended conjugation, and minimal steric hindrance as key
predictors of antimicrobial activity. To further interrogate the

physicochemical basis of these observations, we performed

nol—water partition coefficient (log P), total polar surface area
(TPSA), total number of rings, and number of rotatable bonds
and (2) charge-associated metrics, including number of amide
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bonds, number of hydrogen donors and acceptors, and number
of protonatable nitrogen atoms indicative of positive charge in
aqueous environments.”*™° Among these, TPSA and the
number of positively charged sites showed the strongest
inverse correlation with the median MIC values (Figure S12),
consistent with model-derived feature importances.

Two-component PCA of these physicochemical descriptors
(Figure 4A) revealed a notable pattern in which active
molecules clustered distinctly from inactive ones, with active
compounds forming an approximately linear arrangement in
the PCA space. The first PCA component from physicochem-
ical descriptors explains 41% of the variance, and the second
explains 21%. This clustering demonstrates that antimicrobial
activity is governed by specific combinations of charge and
lipophilicity parameters rather than individual properties in
isolation, consistent with the complex SAR identified by both
the Gradient Boosted Tree model and the LLMs.

Additional evidence for the explanatory power of the
physicochemical descriptors is provided in Figure 4B, which
shows the distribution of the MCC for binary classification for
the same four classifiers in Figure 2 but classifying at a much
lower threshold of MIC <10 uM. A lower MIC threshold
allows for screening out of molecules that have some activity
but are still of low interest, with the cost of a more severe data
set imbalance that can be difficult for a classifier to learn from.
Figure 4B shows that the MCC using the LLM-guided
descriptors was higher on average for all classifiers than
substructure encoding, and for the Extra Trees classifier, nearly
75% of all samples had an MCC above 0.5. This shows that a
classifier’s performance can be significantly improved with
feature selection assisted by LLMs.

This convergence of evidence across multiple approaches,
especially feature importance from ML models, attribution
analysis from LLMs, and now multivariate physicochemical
analysis, provides compelling support for a membrane-
targeting mechanism of action. The structural features
consistently identified as critical for activity (cationic groups,
extended conjugation, and conformational flexibility without
bulky substituents) closely align with the known features of
membrane-active molecules, including antimicrobial peptides,
quaternary ammonium compounds, and other membrane-
disruptive agents that bind to and destabilize bacterial
phospholipid bilayers.”' ~>*

Based on the insights gained from different approaches, we
can prioritize the synthesis of derivatives with optimized charge
distribution, appropriate hydrophobic/hydrophilic balance,
and minimal steric hindrance for enhanced membrane
interaction while potentially reducing the resource-intensive
cycle of trial-and-error optimization.

Conceptualizing and Predicting New Molecular
Candidates. While LLMs were able to independently suggest
additional antibacterial molecules based on the cyanine
scaffold, not all suggestions were chemically meaningful or
synthetically feasible (Figure 3C). To address this limitation
and expand the molecular design space more systematically, we
developed a combinatorial approach to generate a compre-
hensive set of candidate molecules. This strategy is compatible
with both traditional ML and LLM screening, allowing for a
more targeted evaluation.

The substructures used to construct the cyanine-derived
molecules, originally shown in Figure S1, were categorized into
five functional groups: (1) ionic heterocycles, (2) neutral
heterocycles, (3) the polymethine bridge, and two arms (4)

Arm A and (S) Arm B, each capable of attaching to a nitrogen
center on the heterocycle. A “blank” arm representing a methyl
group was also included as an option. New candidate
molecules were created by systematically combining one
building block from each of the five categories, following the
blueprint illustrated in Figure 4C. This process yielded 13,552
possible molecular permutations. The 86 redundant entries,
corresponding to molecules already synthesized and tested,
were filtered out, resulting in a refined library of 13,466
possible candidate structures.

To prioritize among the candidate molecules, we employed
two screening strategies: one using Grok-3 Think (the top-
performing LLM), and the other using the Gradient Boosted
Tree classifier. For the LLM-based evaluation, we provided
Grok-3 Think with a formatted prompt asking it to select the
ten most likely active molecules from the candidate library (see
Appendix 2). The structures selected by Grok-3 Think (Figure
4D) typically featured positively charged arms and long
conjugated polymethine bridges, structural traits previously
associated with high activity. However, some candidates also
incorporated bulky arms (i.e., arms more than ten atoms in
length), which could detract from activity due to steric
hindrance.

In parallel, we developed a ML-based scoring function called
the “interest score”, which integrates both the Gradient
Boosted Tree model’s predicted probability of activity and
molecular similarity to known potent molecules in the data set.
This type of scoring to screen molecules is known as data
fusion in cheminformatic literature,>> and the technique can
include the combination of structural similarity and ML results
as done in this study.”® The similarity between two molecules
is calculated using the RDKit Tanimoto similarity function,”’
which outputs a number between 0 (least similar) and 1 (most
similar). By multiplying the Tanimoto similarity scores with
the probability of activity according to the classifier, we derived
the interest score for the structure.

S
S(mj) = Bictive(mj)H T(mj, m;’) )

where S is the interest score, P, .. is the probability of activity
according to the classifier, m; is the candidate molecule, T is
the Tanimoto similarity function, and m; is one of the five most
active molecules from the data set (Figure S13). We chose a
multiplicative approach rather than additive or weighted
averaging because it enforces that both prediction confidence
and structural similarity must be high for a candidate to score
well. This conservative approach is particularly valuable given
the modest size of our training data set. The top five active
molecules were chosen because those were the only five
molecules in the data set with the lowest median MIC of 2.5
puM.

Of the entire candidate molecule set, we attempted to
choose the 500 most chemically diverse representative
candidates using sphere exclusion.”®” A minimum cluster
centroid distance of 0.32432 yielded 501 representatives,
which were then analyzed by the SA Score algorithm® to
determine the feasibility of synthesis. Figure S14 shows the SA
Score vs interest score for the 501 representatives. Ten
molecules have a notably high interest score above 0.035, and
although they have a relatively low SA Score compared to the
majority of representative molecules, their SA Score is still
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above 3.0 out of 5, meaning that they are not uncharacteristi-
cally difficult to synthesize.

The ten molecules with the highest interest scores (Figure
4E) were notably different from those selected by Grok-3
Think. Gradient Boosted Tree-prioritized candidates were
generally smaller, more compact, and featured indole rather
than benzoindole cores. Most of them contained a single arm,
most often a dimethylamine or similar group, capable of
bearing a positive charge in aqueous environments. This
contrast between the two ranking approaches highlights the
different inductive biases of LLMs versus traditional classifiers:
while LLMs favored extrapolative design principles (e.g.,
maximizing positive charge or bridge length), the Gradient
Boosted Tree leaned toward conservative optimization
grounded in chemical similarity.

Together, the top 20 molecules across both approaches,
specifically, derived from Grok-3 Think and the Gradient
Boosted Tree model, represent compelling leads for exper-
imental validation. Their structural diversity, overlapping
design features, and complementary selection rationales
increase the likelihood of identifying active compounds with
desirable pharmacological properties.

Interestingly, our antibiotic cyanine derivatives are structur-
ally related to the well-characterized voltage-sensitive carbo-
cyanine dye DiSC3(S) (3,3'-dipropylthiadicarbocyanine io-
dide), which is widely used as a fluorescent probe for bacterial
membrane potential.61 DiSC3(5) itself is not used as an
antimicrobial, but its uptake and fluorescence changes upon
depolarization reflect its ability to interact with bacterial
membranes and respond to changes in the transmembrane
potential. It is notable, however, that DiSC3(5) is not reported
as disrupting and destroying the membrane. The most similar
molecule in our data set to DiSC3 is BL-545, an aminocyanine
with one sulfur in each heterocyclic ring (Figure S15). BL-545
does not exhibit high activity against S. aureus, like other
cyanines with sulfur in them, possibly due to a negative charge
concentration in an aqueous environment that offsets the
positive charge mechanism. The contribution of membrane
potential changes to antimicrobial activity could be the subject
of future work using assays analogous to those developed for
DiSC3(5).

LLMs have improved considerably between 2022 and 2025,
with new and more sophisticated models being released
regularly.””*> Some models have also been discontinued,
including Grok-2 and Grok-3 as well as ChatGPT 4. Any study
of commercial LLMs is therefore time-sensitive, and newer
models will likely show improvements in drug discovery tasks.
For our classification task, Grok-4 Heavy, the most
sophisticated XAl model, achieved a slightly higher MCC
than earlier models (see Figure S16), but only because it had
one false positive instead of one false negative. The increase in
performance was marginal for a classification task at this scale,
and therefore, conclusions about improvement in the Grok
model are difficult to draw.

B CONCLUSIONS

This study demonstrates that both traditional ML and LLMs
can accurately predict the antibiotic activity of cyanine-derived
molecules, achieving F; scores above 0.8 despite a modest data
set (n < 150). Notably, both modeling approaches converged
on similar SAR insights, identifying key features, such as
localized positive charge and extended conjugation, as critical
for activity, likely due to their role in bacterial membrane

disruption. The hypothesis that the cyanines disrupt bacterial
membranes due to charge concentration explains trends in the
data, but future work could validate this experimentally. The
top molecules suggested by the LLMs and Gradient Boosted
Tree algorithm could be synthesized and tested, and the ones
with higher charge concentration should have a lower MIC
than the others.

The alignment between LLM-derived and ML-derived
attributions strengthens the confidence in the underlying
design rules and offers mechanistic interpretability. These
features are consistent with a membrane-targeting mode of
action, suggesting that highly charged, yet conformationally
flexible, molecules could interact favorably with negatively
charged phospholipid bilayers. Importantly, bulky or sterically
hindered substituents appear to reduce activity, likely by
impeding membrane association.”' ~>*

To address concerns around reproducibility in LLM-based
research, future work should explore the integration of open-
source models such as LLaMA, Mistral, and BLOOM, which
offer transsparent architectures and version-controlled check-
points.””®> Unlike proprietary systems that evolve unpredict-
ably, these models can be frozen and self-hosted, enabling
consistent replication of results across time and institu-
tions.””*® Recent studies have demonstrated that open-source
LLMs can match or exceed proprietary performance in
scientific tasks while supporting ethical and reproducible
workflows.”” By leveraging these models, it is possible to
build stable, auditable pipelines tailored to domain-specific
applications, setting a foundation for long-term scientific
validity and collaborative benchmarking.

Beyond prediction, ML and LLM querying were also
leveraged to suggest new candidate molecules. LLMs such as
Grok-3 Think provided creative, interpretable, and syntheti-
cally feasible designs, while the Gradient Boosted Tree model
enabled a systematic, similarity-weighted ranking of likely
active candidates. These complementary outputs produced a
shortlist of testable molecules that can now be synthesized and
validated, completing the cycle of design, evaluation, and
iteration.

The success of LLMs in this context highlights their
emerging role as accessible, low-barrier tools for medicinal
chemistry. With minimal prompting and no fine-tuning, these
models offered both an accurate classification and chemically
plausible design suggestions. Their ability to reason over
molecular structure using natural language interfaces facilitates
broader use by nonspecialists, potentially democratizing early-
stage drug discovery. Of special note is the large reduction in
labor and time required when conducting analysis with LLMs
instead of traditional ML programs, which, like other academic
projects, can take months to complete.”*®” The use of LLMs
allowed for rapid analysis of the same SAR, with the only
preparation beforehand being the choice of molecular structure
formatting and careful prompt writing. The LLMs only take 1—
3 min to finish their computations, even on a cell phone or
cheap laptop, since the services are web-based and all response
generation is physically conducted on remote servers. Thus,
parallel studies could be conducted with the ten models from
Table 1 within a two-week period.

Given the urgency of the AMR crisis, along with the high
cost and failure rate of traditional antibiotic research and
development, integrating LLMs into the molecular design
pipeline offers a path to accelerate not only the discovery of
new antibiotics but also the refinement of existing candidates.
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Beyond predicting the antibacterial activity, LLMs could be
leveraged to suggest modifications that improve pharmacoki-
netic properties, reduce toxicity, and minimize the likelihood of
resistance development. Future work should explore their
application across larger data sets, more diverse chemical
scaffolds, and experimental validation workflows, extending
their utility across both antibiotic optimization and broader
structure-based drug design efforts.

B METHODS

Broth Microdilution Assay for Determining the
Minimum Inhibitory Concentration. The antimicrobial
activity of cyanine compounds was evaluated using a broth
microdilution assay adapted from Clinical & Laboratory
Standards Institute guidelines.”” On day 1, S. aureus was
streaked onto Luria—Bertani broth agar plates and incubated
overnight at 37 °C for 16—20 h to obtain well-isolated
colonies. On day 2, 3—5 colonies were picked using a sterile
loop and suspended in sterile phosphate-buffered saline. This
suspension was then diluted in fresh cation-adjusted Mueller—
Hinton broth (CAMHB) to yield a final inoculum of
approximately ~1 X 10° CFU/mL. Sterile microtiter plates
were prepared by dispensing 200 uL of the inoculated
CAMHSB into column 1 and 100 xL into columns 2 through
12.

Cyanine compounds were prepared as 16 mM stock
solutions in 100% DMSO and stored at —20 °C. For MIC
testing, 1 uL of the compound stock was added directly to
column 1 of the inoculated plate to achieve a final test
concentration of 80 uM. A 2-fold serial dilution was performed
across columns 1—10 by sequentially transferring 100 uL and
mixing thoroughly. Column 11 served as a growth control
(inoculated CAMHB without a compound), and column 12
served as a sterility control (uninoculated CAMHB). Plates
were covered and incubated statically at 37 °C for 16—20 h.
MIC values were determined spectrophotometrically by
measuring ODgy. The MIC was defined as the lowest
compound concentration resulting in >90% reduction in
absorbance relative to the growth control.

Synthesis of Cyanine Molecules. All molecules in this
work were synthesized by B. Li and T. Si except for Cy7.5-
amine, Cy7-amine, CyS.5-amine, and CyS-amine that were
purchased from Lumiprobe Corp. (Maryland, USA). The
synthesis method for aminocyanines is described in detail by
Ayala-Orozco et al,, Supporting Information, pages S60—S91.”"
The synthesis method for hemicyanines is described in detail
in the Supporting Information.

Software Packages. All chemical structures analyzed in
this work were represented in the SMILES format exported
from ChemDraw representations. Data analysis and ML were
conducted using the Python programming language’” and the
Jupyter interactive Python notebook”® functionality provided
by Visual Studio Code.

Several Python libraries were used for this study. The data
were imported and interpreted using NumPy'* and pan-
das,”>’° and all plots were generated using Seaborn and
Matplotlib. RDKit”” was used to identify chemical features and
substructures as well as to draw all chemical structures and
substructures. The Mordred’® feature calculator was used to
determine Mordred descriptors. We used scikit-learn for all
ML model trainin% and cross-validation as well as for LLM
model evaluation.”

ML Classifiers. The Logistic Regression model”” is a linear
classifier which predicts the probability of the positive class
(active) according to the logistic equation

1
1+ exp(—Xw + w,) (6)

p(X) =

where p is the probability of the molecule being active, w is the
vector of weights for each feature, and w, is the vector of
intercepts. The logistic regression model minimizes the cost
function

n

min < 37 5~y log(p(X)) = (1 = ) log(1 - p(X)))

v i=1
(7)

where s; is the vector of user-defined weights (the default of 1
for each was used in this study), and S is the sum of all sample
weights (equal to the number of features in this study).

The Gradient Boosted Tree classifier is based on decision
tree classification. A decision tree’' generates a tree of
sequential feature queries to determine the right label for
classification, similar to a flowchart. Each “decision” node in
the tree is optimized to split the data set into classes with
minimum Gini impurity,’’ and trees can vary in depth
complexity. As an ensemble classifier, the Gradient Boosted
Tree model generates multiple decision trees sequentially.
Later trees use the error from earlier trees to adjust their
decision structure according to the steepest gradient ascent
algorithm.*® The final classification is made by weighted
consensus of the ensemble of trees, with later trees being
weighed less than earlier trees.

The “extremely randomized trees” classifier, abbreviated as
the extra trees classifier, is another model that classifies
according to the vote of an ensemble of decision trees, but
instead of sequentially generating trees based on the error of
previous ones, the trees are randomized independently. The
“extremely randomized” nature of the algorithm means that
when each decision node of a tree is being constructed, the
best threshold is chosen from a set of randomly selected
thresholds (rather than an exhaustive search of all possible
thresholds). The independently formed trees tend to be
individually biased, and the classifier relies on the biases of
many trees canceling out.

The Gaussian Naive Bayes classifier is a model that operates
according to Bayes’ theorem, which states that the probability
of a molecule being of class y given features x; is related to the
converse conditional probability and independent probabilities
of the class and features as follows:

P(xy, -y x,ly)P(y)

P(x,, ..., x,) (8)
All Naive Bayes classifiers make the “naive” assumption that
the conditional probability of each feature given the class is

independent,®’ and therefore that
P(x,, .., x,ly) = [I_, P(xly). This key assumption simplifies

P(ylxy, ., x,) =

Bayes’ theorem to

PO, P(xly)

Because the conditional probability distribution of the
individual features is not known, each Naive Bayes classifier
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assumes a different distribution. The Gaussian Naive Bayes
classifier®” assumes this distribution to be Gaussian:

(xi - /4},)2

1
exp| — 2
2
N ZJTUy ZUy (10)

In the scikit-learn library, the parameters ¢ and y are estimated
using the maximum likelihood. Because P(y) and P(x,, -, x,)
can be directly observed by the classifier for a given data set,
the classifier finally calculates the left-hand side of Bayes’
theorem directly.

P(ylx,) =

B ASSOCIATED CONTENT

Data Availability Statement

Figure 1A and the graphic table of contents were created in
BioRender. Lathem, A. (2025) https://BioRender.com/
rodqtzo. The files have been deposited on Figshare using the
following public link: https://figshare.com/projects/
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